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Equilibrium in Multiphase Polydisperse Fuids 
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Based on the principle of Gibbs phase equilibrium, three different algorithms are 
developed for phase equilibrium calculations of polydisperse mixtures. These 
algorithms are based on (i) the equality of the chemical potentials of com- 
ponents in each phase, (ii) the minimization of the total Gibbs free energy of the 
system with respect to all the system variables, and (iii) the equilibrium ratios 
constraint between the phases. All three algorithms demonstrate applicability to 
mixtures with different mole fraction distribution functions and different equa- 
tions of state. The results of calculations using the three phase algorithms are 
compared with the simulated multicomponent hydrocarbon mixture data, and 
the results are in good agreement. 

KEY WORDS: continuous thermodynamics; distribution function; equation 
of state; Gibbs phase equilibrium; polydisperse mixtures. 

1. I N T R O D U C T I O N  

In conventional Gibbsian thermodynamics for multiphase equilibrium 
calculations, each component of a mixture is assumed identifiable and its 
concentration can be determined by ordinary chemical analysis. This 
assumption is feasible if the system contains only a few components. The 
species concentrations for highly complex mixtures cannot be determined 
by ordinary chemical analysis. Examples of such mixtures are petroleum 
reservoir fluids, vegetable oils, polymer solutions, and the like. In these 
cases, the assumption of known mole fractions is invalid, and phase predic- 
tion using conventional Gibbsian thermodynamics is not feasible. 

Another method which is an extension of Gibbsian thermodynamics, 
generally called continuous thermodynamics, has been used extensively to 
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perform phase equilibrium calculations for complex mixtures. Instead of 
using the mole fractions of components, or of pseudocomponents (a 
method for lumping components, e.g., Ref. 1), a continuous distribution 
function is used for describing the composition distributions. 

A number of earlier efforts in the direction of continuous ther- 
modynamics are known. To introduce continuous distribution functions to 
complex mixtures such as reservoir fluids, some investigators have presen- 
ted a number of theories which can be applied within this framework of 
thermodynamics and statistical mechanics (e.g., Refs. 2-5). Studies based 
on the concept of continuous thermodynamics have been presented by 
another group of investigators for petroleum distillations and polymer 
separations (e.g., Refs. 6-11). All the contributions mentioned above have 
been restricted to specific models (Raoult's law). The chemical potentials of 
real fluids are not based necessarily on the ideal-solution model. Therefore, 
these studies cannot be applied to the general problem of continuous 
thermodynamics. 

In recent years, a number of advances in the direction of phase equi- 
librium calculations of nonideal continuous mixtures have been made. A 
continuous distribution has been applied to equations of state: Gualtieri 
et al. [12] to the van der Waals equation of state and Briano [13] to the 
Redlich-Kwong equation of state. Kehlen et al. [14] have reviewed the 
concept of continuous thermodynamics in generating general thermo- 
dynamic property relations for such properties as chemical potential, 
entropy, enthalpy, and Gibbs free energy of continuous mixtures. More 
recently, Cotterman and Prausnitz [ 15 ] have applied the continuous Soave 
equation of state to the Gualtieri [12] technique for phase equilibria. 

Previously [-16], two techniques have been presented based on the 
minimization of the Gibbs free energy and an equilibrium k-value techni- 
que. The work presented here is a new technique for equating the chemical 
potentials using a field distribution function. The results for the three 
techniques are compared to the pseudocomponents method using several 
feed composition distributions and, in each case, using the van der Waals 
and Peng-Robinson equations of state. 

2. THEORY OF CONTINUOUS MIXTURE PHASE EQUILIBRIA 

For a polydisperse mixture having a large number of components, 
compositions may be replaced with a composition distribution function 
F(I, Io, ~) whose independent variable I is some measurable property. This 
property should characterize each species within the whole range of a 
polydisperse mixture such as molecular weight or boiling point with initial 
value of I 0 and variance of q. 
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The composition distribution function F(L Io, i/) is normalized over 
the entire range of I such that 

f z F( I) dI= 1 

where I is the molecular weight of species L 
Various investigators have proposed several distribution functions for 

the composition distribution functions of continuous mixtures. These func- 
tions are reported in Table I. For example, a normal distribution function 
has been adopted by Ratzsch and Kehlen [17] and also by Hoffman [8] 
for polymers and reservoir fluids. The Schulz 1-18] distribution function 
has been used by Gualtieri et al. [12] for their fundamental studies on con- 
tinuous mixtures. And the gamma distribution function has been selected 
by Cotterman and Prausnitz [ 15 ] for petroleum reservoir fluids. To choose 
a certain continuous distribution function, some general knowledge about 
compositions of the many-component mixtures under consideration is 
necessary. For example, the exponential-decay distribution function [19] 
can be applied for the gas-condensate reservoir fluids, while the so-called 
"gamma" distribution function [ 19 ] may be applied for heavier petroleum 
fluids. 

In the case of continuous mixtures, an extensive thermodynamic 
property, such as the compressibility factor Z, may be considered as a 
function of temperature T, pressure P, and the extensive continuous 
distribution function N(I)fl 

z = z [ T ,  P, N(/)] (1) 

where N(I) is the amount of component I and I is an independent variable 
such as molecular weight or boiling point. In Eq. (1), N(I) can be expressed 
with respect to the intensive continuous distribution function F(1) such that 

N(I) = NF(I) 

where N is the total number of moles of the mixtures. A similar relation 
corresponding to the above equation in the discrete case is 

N i = Nx i 

where xi is the mole fraction of component i. 
From the expression of the compressibility factor, one can derive other 

thermodynamic properties such as the chemical potential for such a 

2 Definitions of symbols are given under Nomenclature (below). 
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mixture. For example, an expression for the chemical potential of a fraction 
in a continuous mixture is generally needed for phase equilibrium calcula- 
tions (e.g., Refs. 12, 13, 15) and can be derived as the following form. 

#(I) = #~ + f v  { [dP/dNV(I)] T,v,I--  RT/v} dv 

- RTln{v/[RTNF(I)] } + RT (2) 
or  

#(I) = #~ + ~b[v, T, F(I)] - RTln{v/[NF(I)] } (3) 

where 

f? ~[v, r ,F( I ) ]= {EdP/dUF(I)]T,~,,-Rr/v} dv + R T +  Rr ln  R r  

where g~ is the chemical potential of the continuous reference state at 
temperature T. With regard to the above equation, they have assumed that 
there is only one family of continuous mixtures in the system. 

Classical thermodynamics for multiphase equilibrium calculations 
usually requires equating the temperatures and pressures between phases 
and the chemical potentials of components between phases. For vapor- 
liquid equilibrium of a continuous mixture, this means the following 
conditions must be satisfied: 

T=  T L =  T v (4) 

P = PLEVL, T, FL(I)] = pVEvv, T, Fv(I)] (5) 

#L(I) = #v(i), I t ( 0 ,  ~ )  (6) 

Since the distribution function variable I changes from some initial value I0 
to very large values, Eq. (6) is representative of a multitude of equations. 

To show the difference between discrete and continuous vapor-liquid 
equilibrium concepts, Table II illustrates comparative balance equations of 
a continuous mixture and a discrete mixture. Using Eq. (3), we can rewrite 
the phase equilibrium conditions for a one-family continuous mixture. 

P = PLET, vi,, FL(IoL, t/L, I)] = pV[T, Vv, Vv(Iov, r/v, I)] (7) 

(~LET, VL,FL(IoL, qh, I)] --RTln{vL/ENFI.(IoL, rln, I)]} 

= ~bV(T, Vv, Fv(Iov, qv, I)) 

-RTln{vv /[Nrv( Iov ,  qv~ 1)]}, I t ( 0 ,  oo) (8) 

It is necessary to use an equation of state to calculate pressure and the 
chemical potentials in the equilibrium liquid and vapor phases. Generally, 
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Table II. 

Mansoori, Du, and Antoniades 

Comparison of the Balance Equations of a Continuous 
Mixture and a Discrete Mixture 

Continuous mixture Discrete mixture 

Total material balance 

Component material balance 

Normalization conditions 

Average molecular weight 

/'/f ~ HL -[- n v nf  : HL-~- n v 

nfFr(I)  = r / L F L ( / )  + n v F v ( l )  nfz i  = nL Xi -~ nV Yi  

Vf(I )  = VL r L ( I  ) + F v r v ( I  ) zi = r E X  ' + r v  Yi 

$/Ff(I) dI  = 1 Y~i zi = 1 

SIFL(1) d l =  1 ~_,txi = 1 

51 Fv(I) dI  = 1 ~-,i Yi = 1 

M r  = ~1 F f ( 1 )  Id I  M f  = ~ i z i M i  

M L = 5 IFL( I )  I d l  M L = ~ , i x i M i  

M v = 5IFV(I) I d l  M v  = ~,i y i M i  

it is impossible to solve Eqs. (7) and (8) simultaneously for the liquid and 
vapor continuous mixtures in equilibrium. 

To extend the application of continuous thermodynamics to practical 
cases such as reservoir fluids, polymer solutions, and vegetable oils, we 
have developed three computational algorithms for the phase behavior 
predictions of continuous mixtures with wide ranges of molecular weight 
distribution. 

2.1. Equality of the Chemical Potentials Algorithm 

Since it is impossible to solve Eqs. (7) and (8) simultaneously, we may 
assume that the first n derivatives of the chemical potential exist. As a 
result, Eqs. (7) and (8) can be replaced by the following set of equations 
as presented by Du and Mansoori [20]: 

P=pL[T, VL,FL(IoL, tlL, I)]=pv[T, vv, Fv(Iov, tlv, I)] (9) 

#g[T, VL, re(Ioe, qe, I)]=pV[T, vv, Fv(Iov, tlv, I)] (10) 

8#LET, rE, FL(IoL, t/L, 1)3/81= 8#VET, Vv, Fv(Iov, qv, I)]/8I (11) 

. ~  

a"#LET, rE, FL(IoL, tle, I)3/8I" = 8n#v(T, Vv, Fv(Iov, t/v, 1))/81" (12) 
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The phase rule developed by Du and Mansoori [21 ] states that the follow- 
ing degrees of freedom are required for r separate fractions (or families). 

f = r + l  (13) 

For r = 1 there are two degrees of freedom. There are seven variables 
which include the initial values Iov and IOL, and f = 2 is required, therefore, 
the number of equilibrium relations required is five. We now assume that 
there exists a field distribution function, 

F~(I) = Fx(I, fix, Iox) (14) 

such that the following four equations can effectively represent the n 
equations given by Eqs. (9)-(12). 

f #k(I) Fx(I ) dI= ft 'uv(I) F~(I) dl (15) 

f~ [O#L(I)pI] Fx(I) dI= fl [8#v(I)/SI] Fx(I) dI (16) 

f~ [~2#k(I)/aI 2] Fx(I) dI= fI [82#v(I)/~I2] Fx(I) dI (17) 

~z [03#L(I)/813] Fx(I)dI= f, [83#v(I)/OI 3] F~(I) dI (18) 

The equality of pressures, Eq. (7), together with Eqs. (15)-(18) will con- 
stitute five equations needed for vapor-liquid equilibrium calculation of a 
one-family continuous mixture. The functional form and parameters of the 
field distribution function Fx(L ~lx, Iox) will depend on the nature of the 
system under consideration. In some instances, it may be chosen to be 
identical to the distribution function of the feed. 

2.2. Minimization of the Gibbs Free Energy and Equilibrium k-Value 
Techniques 

For a system in equilibrium (constant T and P), for any differential 
"virtual displacement" occurring in the system, a general equilibrium 
criterion should be imposed on the system such that the total Gibbs free " 
energy is minimal, 

(dG) r,p = 0 (19) 
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To restrict our consideration only to vapor-liquid equilibrium, we have 
derived a continuous expression for the total Gibbs free energy [16]. 

G = GL + Gv (20) 

The equilibrium criterion, Eq. (9), is imposed on the system. Then all of the 
first derivatives of the total Gibbs free energy G with respect to each 
variable, such as variance or initial value, will equal zero, and thus, G is 
minimized at constant T and P. The equality of the pressures and the 
following four relations give the five relations required by the phase rule. 
The technique developed uses the following criteria [16]. 

( OG/OrlL)T,P, nv,Xor,,o v = 0 (21) 

(cSG/OtlV)T,e,,~l,,ZoL,,o v = 0 (22) 

096/OloL)T.e,,V,,~L,Iov = 0 (23) 

(oa/Olov)r,e,,v,,L,loL = 0 (24) 

The equilibrium k-value technique uses continuous expressions for the 
fugacity coefficients [16]. The fugacities of each ith component are equated 
between the phases at equilibrium. 

fia =fib . . . . .  fip ( i=  1, 2...n) (25) 

where p and n are the number of phases and components respectively. For 
a two-phase system the fugacities are equated for each component. 

7tLET, VL, FL(IoL, t/L, I)] FL(I, IOL, t/L) 

= 7tV[T, Vv, Fv(Iov, t/v, I)] Fv(I, Iov, t/v) (26) 

The equilibrium ratio K(I), which is the ratio of two fugacity coefficients of 
component / ,  has been defined as follows. 

K(I) = 7tL[ T, VL, FL(IoL, t/e, I )] /~V[T,  Vv, Fv(Iov, qv, I)] (27) 

Mass balances are applied and the following zeroth and first moments of 
the equations must be solved simultaneously over the range of continuous 
components [16]. 

ftFr( I,/of, q0/{ 1 + F v [ K ( I ) -  13} dI= 1 

f Ff(L/of, qf) K(I)/{1 + F v [ K ( I ) -  1 ] } dI= 1 (29) 

(28) 
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ftFL(I, Ioi.,rlL){l + F v [ K ( I ) - l ] }  IdI= ftFf(I, Iof, rlf)IdI (30) 

f, FL(I, Ioi.,rlL){l + F v [ K ( I ) - l ] }  I/K(I)dI= ~.,Ff(I, Iof, tlf) IdI  (31) 

The equality of the pressures, Eq. (7), together with Eqs. (28)-(31) will 
constitute a system of five equations consistent with the phase rule. 

3. A SIMPLE EXAMPLE: PHASE EQUILIBRIUM CALCULATIONS 
BASED ON THE VAN DER WAALS EQUATION OF STATE 

To illustrate the utility of the proposed continuous mixture phase 
equilibrium algorithms, we present here a simple example in which the 
van der Waals equation of state is used for mixtures. 

P =RT/(v - b) - a/v z (32) 

a = 2 2 xixj(aiiajJ) 1/2= x~a~/2 (33) 
i j 

b = ~ x i b  i (34) 
i 

and, for example, the distribution function, the exponential-decay distribu- 
tion function which can exactly describe the composition of gas-condensate 
reservoir fluids, is used. 

F(I) = (l/r/) exp[ - ( I -  Io)/t/] (35) 

In order to extend the van der Waals equation of state to continuous 
mixtures, Eqs. (33) and (34) for a and b must be replaced with the follow- 
ing two expressions, respectively. 

a= {f1F(I)[a(I)]l/2 dI} 2 (36) 

b = f, F(I) b(I) dI (37) 

Since ai and bi can be fitted to pure-component physical property data, 
when we apply the above equations for a homologous series of hydro- 
carbon compounds, [a(I)] 1/2 and b(I) will be polynomials relating the 
molecular weight of hydrocarbon compounds. For the family of paraffins, 
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Figs. 1 and 2 indieate that [a(I)] 1/2 and b(I) can be accurately correlated 
to the following third-order polynomials, respectively. 

[a(I)] 1/2 = ao + al I +  a2I 2 + a3 I3 (38) 

b(I) = bo + b l I  + b212 + b3 I3 (39) 

By introducing Eqs. (38), (39), and (35) into Eqs. (36) and (37), the 
following expressions for a and b are derived. 

a = [ao + a~(Io + rl) + a2(I~ + 2Io~/+ 2r/2) + a3(I 3 + 312~1 + 61oi/2 + 6r/3)] 2 

(40) 

b=bo + b,(Io + rl) + b2(I~ + 2Ioq + 2r12) + b3(I3 + 3I~l + 61o~12 + 6rl 3) (41) 

In what follows, the equations, based on the proposed algorithms and the 
continuous van der Waals equation of state listed above, have been 
derived, respectively. 

For the present example, since /Of = I0L = I0V = molecular weight of 
methane, we need only three equations to perform vapor-liquid equi- 
librium calculation of a one-family continuous mixture. As a result, the 
following equations need to be solved simultaneously. 

m-  

4 

O 
0 3,20 8b =so 2~o 

MOLECULAR WEIGHT~I 

I C  

Fig. 1. Parameter a~/2 of the van der Waals equation of 
state versus the molecular weight of paraffins. The dots are 
the calculated data, while the solid line is the fitted curve 
defined by Eq. (38). 
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O.8 

fla 

o.6- 

5 
~ o.4- 

z 

OZ- 

0.0 
0.0 3 2 0  16o 24o 

uou~cuu,. WE~O.T,I 

Fig. 2. Parameter bi of the van der Waals equation of state 
versus the molecular weight of paraffins. The dots are the 
calculated data, while the solid line is the fitted curve defined 
by Eq. (39). 

In all three methods the equality of the pressures is an equilibrium 
criterion. 

P = R T / ( I . )  L - b L )  - -  aL/V 2 = R T / ( v v  - -  by) - a v / v ~  ( 4 2 )  

(i) In order  to use the equality of chemical potentials algorithm, we 
need to derive expressions for the chemical potentials in the cont inuous 
mixtures. Equat ion  (32) is substituted into Eq. (2) with the foUowing result. 

I~(I) = D O + D ~ I + D2 I2 -k D3I  3 (43) 

where 

D O = - l n ( v  - b)  + bo/(V - b)  - 2aoQ(I ,  h ) / ( R T v )  - In(t/) + Io / t / (44)  

D1 = b l / ( v  - b)  - 2a I Q(I,  h ) / ( R T v )  - 1/q 

De = bz / (v  - b)  - 2azQ( I ,  h ) / ( R T v )  

D3 = b3/(v - b ) -  2a3Q(I ,  h ) / ( R T v )  

Q(I ,  t/) = 2 [ a ( I ) ]  1/2 [ a  ~ + al(Io + t/) + a2(Io + 2Io t /+  2t/2) 

+ a3(I~ + 312rl + 6Ioq 2 + 6t/3)] 

(45) 

(46) 

(47) 

(48) 



1192 Mansoori, Du, and Antoniades 

According to Eqs. (43)-(47),  Do, D1, D2, and D 3 a r e  all functions of  the 
temperature ,  volume, and distr ibution variance t/. To  per form vapor - l iqu id  
equil ibrium calculations we need to substitute Eq. (43) into Eqs. (15)-(18).  
For  the present  example,  n = 3. But since Io -- IOL = I0V ----- Ior (the molecular  
weight of methane) ,  we need to consider only the zeroth and first 
derivatives of the chemical potential.  As a result, we need to solve the 
following set of four equations:  

P = R T t ( v L  - h i . )  - a L l v ~  = R T l ( v v -  by) - av/V2v (42) 

DOL -- Dov + (DIL -- Dlv)(Iox + rlx) + (DEL -- Dzv)(I~x + 2Io~tlx + 2tl2x) 

+ (D3L -- D3v)(I3x + 312xrlx + 2 6Ioxqx + 6 .  3) = 0 (49) 

D1L -- D l v  + 2(DzL -- D2v)(Iox + r/x) + 3(D3L -- D3v)(Io2x + 2Iox fix + 2tl2x) = 0 

(501 

The s imultaneous solutions of  the above  four equations,  using a trial value 
of ~/F=15.0 and a p roper  choice of r /x=397.51 are plot ted as a 
P - T d i a g r a m  in Fig. 3. In Fig. 3, the P - T  diagram using the present  algo- 
r i thm is compared  with the results of Gualt ier i  et aL [12] .  In  their model,  
l inearity of parameters  a and b of the van der Waals  equat ion  of state with 

8 0 ,  

7 0  

td 

50- 

4O 
3OO 

cP 

Q �9 

~4o ~o 
TEMPERATURE, DEG. K 

Fig. 3. The P-T diagram using the continuous van der 
Waals equation of state with ~]f~ 15.0. The dots are results 
taken from Gualtieri et al. [12]. The smooth line is from 
the identical results using the three phase algorithms, 
equality of the chemical potentials with qx = 397.51, mini- 
mization of the Gibbs free energy, and equilibrium k-value 
algorithms. 
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respect to molecular weight is assumed. According to Fig. 3, such an 
assumption will produce a result which is far from the phase diagram of the 
continuous mixture. 

(ii) For the minimization of the Gibbs free energy technique, the 
simultaneous solutions for a trial value of r/f= 15.0 are plotted as a P T  
diagram. A P - T  diagram identical to that in Fig. 3 is produced. 

(iii) The equilibrium ratio algorithm for phase equilibrium calcula- 
tions of continuous mixtures has been applied to a feed described by 
qr= 15.0. A P-Tdiagram identical to those in the other two algorithms 
(also Fig. 3) is produced. 

Application of the proposed algorithms for the van der Waals equa- 
tion of state is a simple example of continuous mixture phase equilibrium 
calculations. In what follows we introduce the proposed algorithms for a 
Peng-Robinson equation of state which is extensively used for many 
practical phase behavior calculations. 

4. PHASE EQUILIBRIUM CALCULATION BASED ON THE 
CONTINUOUS PENG-ROBINSON EQUATION OF STATE 

The Peng-Robinson equation of state for mixtures, 

P = R T / ( v  - b) - a ( T ) / [ v ( v  + b) + b(v - b)] (51) 

a(T) =~  ~ x~xj(a~ajj)v~= x~a~/~ (52) 
i ] 

b = • xibi (53) 
i 

where 
a,e(T) = a(Tc~)[ 1 + k~(1 - Tff2)] 2 

a(Tci) = 0.45724R 2 T2i/Pr 

bi = O.0778RToi/Poi 

k = 0.37464 + 1.54226o - 0.26992o92 

has 
varieties of fluid mixtures. In order to extend this equation of state to 
continuous mixtures, we write Eq. (54) in the following form: 

[ a ( T ) ]  1/2 = am _ a2 T1/2 (58) 

al  = E  x i a i l ;  a 2 = Z  xiai2 (59) 
i i 

(54) 

(55) 

(56) 

(57) 

received widespread acceptance in phase behavior calculation of 



and 

< 

:E 

~a 

a~, = [a (  To,) ] ~/2 ( I  + k,) 

ai2 = [a(Tr  ,/2 k i  

(60) 

(61) 

Graphical representations of ai,, ai2, and bi for homologous series of 
paraffinic hydrocarbons (starting with methane) versus molecular weight 
are shown in Figs. 4-6. We have been able to represent al(I), a2(I), and 
b(I)  of paraffins by the following third-order polynomials with respect to 
molecular weight I: 

a,(1) = a,o + a n  I + a12 I2 + a13 I3 

a2(I) = a2o + a2, I +  a2212 + a23 I3 

b(I)  = b o + bl I + b2I  2 + b3 I3 

(62) 

(63) 

(64) 

We can derive continuous mixture expressions for parameters a, ,  a2, and 
b of the Peng-Robinson equation of state. The exponential-decay distribu- 
tion function is used along with a procedure similar to the previous 
van der Waals equation of state with the following expressions. 

a, = a,o + au ( lo  + rl) + a,2(I  2 + 210r/+ 2r/2) + a13(/o 3 -+- 3Io2 r/+ 6Ior/2 + 6~/3 ) 

(65) 
4O 

bo i~o z4o .ot~eut,~ ws~G~j 
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3: :0  

Fig. 4. Parameter a~l as defined by Eq. (60) of the Peng- 
Robinson equation of state versus the molecular weight of 
normal paraffins. The dots are the calculated data, while the 
solid line is the fitted curve defined by Eq. (62). 
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Fig. 5. Parameter a,2 as defined by Eq. (61) of the Peng- 
Robinson equation of state versus the molecular weight of 
normal paraffins. The dots are the calculated data, while the 
solid line is the fitted curve defined by Eq. (63). 
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Parameter bi as defined by Eq. (56) of the Peng- 
Robinson equation of state versus the molecular weight of 
normal paraffins. The dots are the calculated data, while the 
solid line is the fitted curve defined by Eq. (64). 
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a2 = a2o + a21(I0 + 11) + a22(I 2 + 21o11 + 2112) + a23(I3o + 3I~11 + 61o172 + 6113) 

(66) 

b = bo + b~(Io + t7) + b2(I 2 + 21o11 + 2112) + b3(I 3 + 3I~11 + 61o//2 + 6113) 

(67) 

Using the continuous mixture Peng-Robinson equation of state, the 
required equations, based on the proposed algorithms for a one-family 
continuous mixture, have been derived. The derivation follows. 

(i) In order to utilize the equality of the chemical potentials algo- 
rithm for phase equilibrium calculations of continuous mixtures, the 
expression of the chemical potential of component I is derived in the 
following form: 

(68) #(I)  = Do + D I I  + D2I  2 -1- D3 I3 

where 

Do=  - R T l n ( v - b ) + C a b o + C 2 ( a l o + a 2 o T 1 / 2 ) - R T l n 1 1 + R T I ~  (69) 

D1 = C1 b l  + C 2 ( a l l  - a21 T 1/2) - RT/11 (70) 

D 2 = C 1 b 2 + C2(a12 - a22 T 1/2) (71) 

D3 = C1 b3 + C2(a13 - a23 T m )  (72) 

and 
C1 = RT/ (v  - b) - av/[b(v 2 -{- 2vb - b2)] 

- a/(2.828b 2) ln[(v - 0.414b)/(v + 2.414b)] 

C2 = Q(h)/(1.414b) ln[(v - 0.414b)/(v + 2.414b)] 

Q(h) = alo + aH(Io + I1) + a12(I 2 + 21011 + 2/12) 

+ aa3(I 3 + 31211 + 610112 + 6113) - [a2o + a2,(Io + 11) 

+ a22(I~ + 2/ot  1 + 2112) + a23(I3o + 3I~11 + 61o112 + 6113)] T 1/2 

To perform vapor-liquid equilibrium calculations we need to substitute 
Eq.(68) into Eqs.(15)-(18). In this example, n = 3 .  But, since 
Iox =IoL =Iov =/of  (molecular weight of methane), we need to consider 
only the zeroth and first derivatives of the chemical potential in the 
equilibrium criteria. As a result, we need to solve the following set of four 
equations. 

P = RT/(vL - bL) -- (alL - -  a2L  T 1 / 2 ) 2 / [ V L ( V L  q- bL) + bL(vL -- bL)] 

= R r / ( v v  - -  b v )  - ( a x v  - a2v Tm)2 / [Vv(Vv  + by) + bv(vv - by)]  (76) 
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(DoL -- Dov) + (D1L -- Dlv)(Io + qx) + (D2L -- D2v)(Io 2 + 2Io r/x + 2r/2x 

+ (D3L -- D3v)(Ig + 3,r + 6 / o ~  + 6~3x) = 0 (77) 

(DxL -- D,v ) + 2(D2L -- D2v)(I o + t/~) + 3(D3L -- D3v)(Io 2 + 2Ioq x + 2//2) = 0 

(78) 

It should be noted that Eqs. (77) and (78) are similar to Eqs. (49) and (50) 
which were derived for the van der Waals equation of state. By using 
Eqs. (76)-(78), the P - T  diagrams of three different hypothetical continuous 
mixtures are calculated and are shown in Figs. 7-9, respectively. Also 
reported in these figures are the P - T  diagrams of the same fluid mixtures 
assumed to contain 6, 10, and 20 pseudocomponents, respectively. Accord- 
ing to Figs. 7 9, the proposed continuous mixture model can effectively 
represent the phase behavior of a many-component mixture. 

(ii) Application of the Gibbs minimization technique to the 
Pen~Robinson equation of state has been used to produce the P - T  
diagrams of three different hypothetical gas-condensate reservoir fluids 
with r/f= 5.72, 9.05, and 25.0 shown in Figs. 10-12, respectively. Also shown 
in these figures are the P - T  diagrams of the same reservoir fluids assumed 
to contain 6, 10, and 20 components, respectively. Figures 10-12 show 
that the proposed algorithm can predict the phase behavior of a many- 
component mixture effectively. 

(iii) The equilibrium ratio algorithm has been used along with the 
Peng-Robinson equation of state to produce the P - T  diagrams of three 
different hypothetical continuous mixtures with ~/f= 5.72, 9.05, and 25.0 
calculated by using a similar procedure and argument as in the case of the 
continuous van der Waals model. They are shown in Figs. 13-15, respec- 
tively. Also reported in these figures are the P - T  diagrams of the same fluid 
mixtures assumed to contain 6, 10, and 20 components, respectively. 
According to Figs. 13-15, the proposed algorithm can present the phase 
behavior prediction of a continuous mixture effectively. 

The P - T  diagrams produced using three different algorithms which are 
reported in this paper are generated by doing dew-/bubble-point calcula- 
tions. The coexisting component mole fractions, equilibrium ratios, and 
liquid volume percentages (with respect to the total volume of the system) 
resulting from flash calculations are compared with experimental data 
[-22]. The flash calculations performed by using the proposed continuous 
mixture algorithms are in good agreement with experimental data, which 
are reported in previous publications [16, 20, 21]. 

840/10/6-7 
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Fig. 7. The P - T  diagram using the continuous Peng-Robin- 
son equation of state with ~/f= 5.72. The dots are from using 
the pseudocomponents method for the six components chosen. 
The smooth line results from using the equality of the chemical 
potentials phase algorithm with ~/x = 9.7225. 
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Fig. 8. The P - T  diagram using the continuous Peng- 
Robinson equation of state with qr=9.05. The dots are 
from using the pseudocomponents method for the 10 
components chosen. The smooth line results from using the 
equality of the chemical potentials phase algorithm with 
qx= 365.82. 
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Fig. 9. The P - T  diagram using the continuous Peng- 
Robinson equation of state with r/f=25.0. The dots are 
from using the pseudocomponents method for the 10 
components chosen. The smooth line results from using the 
equality of the chemical potentials phase algorithm 
r/x = 59.527. 
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Fig. 10. The P - T  diagram using the continuous Peng- 
Robinson equation of state with r/r= 5.72. The dots are 
from using the pseudocomponents method for the six 
components chosen. The smooth line results from using the 
minimization of the Gibbs free energy phase algorithm. 
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Fig. 11. The P - T  diagram using the continuous Peng- 
Robinson equation of state with ~f=9.05. The dots are 
from using the pseudocomponents method for the 10 
components chosen. The smooth line results from using the 
minimization of the Gibbs free energy phase algorithm. 
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Fig. 12. The P - T  diagram using the continuous Peng-Robin- 
son equation of state with ~/f = 25.0. The dots are from using 
the pseudocomponents method for the 20 components chosen. 
The smooth line results from using the minimization of the 
Gibbs free energy phase algorithm. 
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Fig. 13. The P - T  diagram using the continuous Peng- 
Robinson-equation of state with qf= 5.72. The dots are 
from using the pseudocomponents method for the six 
components chosen. The smooth line results from using the 
equilibrium k-value phase algorithm. 
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Fig. 14. The P - T  diagram using the continuous Peng- 
Robinson equation of state with r/f=9.05. The dots are 
from using the pseudocomponents method for the 10 
components chosen. The smooth line results from using the 
equilibrium k-value phase algorithm. 
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Fig. 15. The P - T  diagram using the continuous Peng- 
Robinson equation of state with qf=25.0. The dots are 
from using the pseudocomponents method for the 20 
components chosen. The smooth line results from using the 
equilibrium k-value phase algorithm. 

5. CONCLUSIONS 

Accurate prediction of polydisperse fluid phase behavior using a 
pseudocomponent method requires the choice of a large number of 
pseudocomponents. As a result of this large number, excessive computer 
time is needed. A new technique, the equality of the chemical potentials 
phase algorithm, and two other techniques we have previously developed 
use analytical expressions for chemical potentials, fugacity coefficients, and 
Gibbs minimization equations and are also in forms which are applicable 
to gas condensate systems. These proposed continuous mixture techniques 
can reduce the required computer time significantly, while they retain 
accurate predictions. The computational time needed for these proposed 
schemes is roughly equivalent to the time required for a binary vapor- 
liquid mixture. This can be expected because, instead of a multitude of 
equations, using a pseudocomponent technique a finite number of 
equations is required to be solved for phase equilibrium problems of 
continuous mixtures. 

These proposed continuous mixture techniques are applicable to 
varieties of reservoir fluids, equations of state, and mixing rules. In the 
present report, the application for some hypothetical gas condensate 
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systems using two representive equations of state, the van der Waals and 
the Peng-Robinson equations, is demonstrated. 

For purpose of comparing the three algorithms with the discrete com- 
ponent algorithms, the unlike binary interaction parameters have been 
omitted. For a realistic fluid, continuous expressions for these interactions 
should be included. All three methods require the simultaneous solution of 
one order of magnitude fewer equations than the comparable 20-pseudo- 
component case. These proposed algorithms are important means for 
greatly reducing computational time. 
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NOMENCLATURE 

a,b 
CP 
r(I) 
f 
G 
I 
Io 
K(I) 
P 
R 
T 
v 

Z 

Interaction parameter in the equation of state 
Critical point 
Density distribution function 
Fugacity 
Gibbs free energy 
Distributed variable 
Initial value of density distribution function 
Equilibrium ratio of component I 
Pressure (atm) 
Gas constant 
Temperature (K) 
Molar volume 
Compressibility factor 

Greek Letters 

h 

Fv 
Y 

Variance of density distribution function 
Chemical potential 
Moles vapor per moles in system 
Fugacity coefficient 



1204 Mansoori, Du, and Antoniades 

Subscripts and Superscripts 

i, j Component identifiers 
f Feed stream 
L Liquid phase 
V Vapor phase 
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